首页> 外文OA文献 >Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference
【2h】

Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference

机译:具有距离正则化水平集演化的全自动非刚性分割由深度结构推理初始化和约束

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a new fully automated non-rigid segmentation approach based on the distance regularized level set method that is initialized and constrained by the results of a structured inference using deep belief networks. This recently proposed level-set formulation achieves reasonably accurate results in several segmentation problems, and has the advantage of eliminating periodic re-initializations during the optimization process, and as a result it avoids numerical errors. Nevertheless, when applied to challenging problems, such as the left ventricle segmentation from short axis cine magnetic ressonance (MR) images, the accuracy obtained by this distance regularized level set is lower than the state of the art. The main reasons behind this lower accuracy are the dependence on good initial guess for the level set optimization and on reliable appearance models. We address these two issues with an innovative structured inference using deep belief networks that produces reliable initial guess and appearance model. The effectiveness of our method is demonstrated on the MICCAI 2009 left ventricle segmentation challenge, where we show that our approach achieves one of the most competitive results (in terms of segmentation accuracy) in the field.
机译:我们提出了一种基于距离正则化水平集方法的新型全自动非刚性分割方法,该方法通过使用深度置信网络进行结构化推断的结果进行初始化和约束。最近提出的这种水平集公式在几个分割问题中获得了相当准确的结果,并且具有消除了优化过程中的周期性重新初始化的优点,从而避免了数值误差。然而,当应用于具有挑战性的问题时,例如从短轴电影磁共振(MR)图像进行左心室分割,该距离正则化水平集所获得的准确性低于现有技术。精度较低的主要原因是,对水平集优化的良好初始猜测和可靠的外观模型的依赖。我们使用深度信念网络通过创新的结构化推理来解决这两个问题,该推理可以产生可靠的初始猜测和外观模型。我们的方法的有效性在MICCAI 2009左心室分割挑战中得到了证明,在该挑战中,我们证明了我们的方法在该领域获得了最有竞争力的结果之一(就分割准确性而言)。

著录项

  • 作者

    Ngo, T.; Carneiro, G.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号